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Abstract

The possibility of representing a crack with straight front, normal to the axis, and part through-the-
thickness in a straight pipe containing fluid under pressure, by a spring for simulating its transverse free
vibration has been examined experimentally. The fluid considered is water. Two different materials;
aluminium and mild steel have been examined. Crack size to pipe thickness ratio ranging from 0.19 to 0.64
is considered. Within the fluid (gauge) pressure range of 0–0.981MPa examined, the stiffnesses obtained by
deflection- and natural frequency-based methods show good agreement. This indicates that the
representation of a crack by the rotational spring is reasonably accurate. The natural frequency-based
method can also be used to detect the location of an unknown crack in the pipeline. This has also been
examined. The maximum error in prediction is 2.6% for all the cases considered. Data presented on
variation of rotational spring stiffness vs. ratio of crack size to thickness can be very useful in crack size
detection in pipelines knowing the spring stiffness. The error in the crack size prediction using these plots
lies in the range �16.44% to 10.30% for aluminium and �5.83% to 12.04% for mild steel.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-destructive testing (NDT) methods are often employed for detection of cracks in machine
and structural components. Although a number of accurate, effective and reliable NDT methods
based on X-ray, ultrasonic, magnetism, etc., are available, their adoption becomes uneconomical
for long beams and pipelines which are widely met in power plants, chemical plants and offshore
oil installations, etc. In order to detect a crack by any of these methods, the whole component
requires scanning. This makes the process tedious and time consuming, and the cost involved may
make the application prohibitive. This has motivated development of alternative methods.
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Vibration-based method of crack detection is considered to be a potential candidate and a lot of
efforts [1–21] are now directed in this direction. The method can help to determine the location
and size of a crack from the signatures collected from a single point on the component. Chaudhari
and Maiti [16] have shown the effectiveness of the method based on frequency measurements for
beam with rectangular, I-section and circular hollow sections. Pipes are of special concern here.
Most often they are not empty and can contain materials, e.g., a fluid. Possibility of detection of a
crack based on the vibration method in such components, when the fluid is static and under
pressure has not been examined. This has provided the main motivation for the present study.
The method of crack detection requires a convenient way of modelling free vibration of the

beam with a crack. Some investigators have represented the crack by reducing the section
modulus around the crack locally. Others have represented it by a rotational spring, which adds
an extra rotational flexibility or acts as an energy sink. For rectangular beams with through-the-
thickness crack the rotational spring stiffness can be calculated from the knowledge of a
relationship between stress intensity factor (SIF) and crack size. Readymade relations are also
available [22]. Such a relationship is not available for a round pipe with a crack with straight front
and part through-the-thickness. The rotational spring stiffness can be helpful in solving the
forward problem of determination of frequencies knowing the crack details and the inverse
problem of determination of location and crack size knowing, for example, the natural
frequencies. Therefore determination of the rotational spring stiffness can serve useful purposes.
The stiffness can be determined experimentally through measurement of deflections. It can also be
obtained through frequency measurements in conjunction with inverse vibration analysis. A
comparison of the results based on the two approaches and a comparison of predicted crack
locations with the exact positions have been done. This study helps to comment on the possibility
of adoption of the spring-based representation of a crack and its detection through measurement
of natural frequency in such pipes.

2. Formulation for free vibration of pressurized pipe with crack

For a straight long pipe without any crack filled with an incompressible fluid, neglecting effects
of shear deformation, rotational inertia and damping, the mode-shape equation is given [23] by

w0000 þ
AipL2

EI
w00 �

o2L4ðAprp þ Airf Þ

EI
w ¼ 0; ð1Þ

where o is the natural frequency, w is the transverse displacement, L is the pipe length, E is
Young’s modulus of elasticity, I is the second moment of area of cross-section, rp is the density of
material of pipe, rf is the density of fluid, Ai and Ap are cross-sectional area of fluid cylinder and
pipe, respectively, p is fluid pressure and prime indicates differentiation with respect to x: The
general solution of Eq. (1) involves four arbitrary constants, which are determined from boundary
conditions.
A simply supported pipe with a crack with straight front and part through-the-thickness, i.e., a

non-leaking crack, is split into two segments, which can be connected by a rotational spring at the
crack location (Fig. 1). The governing equation of motion for each segment is of the type of
Eq. (1). Thereby, the mode-shape will involve eight arbitrary constants C1;C2;C3;yC8: There
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will be four boundary conditions and four compatibility equations at the crack location, bðLc=LÞ;
where Lc is the length from left end to crack. The last four are given below:

w1ðbÞ ¼ w2ðbÞ; w0
1ðbÞ þ EI

w00
1ðbÞ
K

¼ w0
2ðbÞ; w00

1ðbÞ ¼ w00
2ðbÞ and w000

1 ðbÞ ¼ w000
2 ðbÞ; ð2Þ

where w1 and w2 stands for displacement for the two pipe segments, and K is the rotational spring
stiffness. The above conditions are based on the assumption that there is a continuity of
deflection, moment, and shear force, and a jump in slope. With eight conditions it is possible to
obtain the characteristic equation for the cracked pipe in terms of a matrix of order 8. By giving
the spring stiffness K as input it is also possible to solve for the natural frequencies from the
characteristic equation [10].
Through the transfer matrix method [13] the characteristic equation which involves a matrix of

smaller size is obtained. The state vectors associated with the right end fwgRight of the pipe can be
written in terms of those of the left end fwgLeft as follows:

fwgRight ¼ ½S
2½S
3½S
1fwgLeft; ð3Þ

where ½S
1; ½S
2 and ½S
3 are the transfer matrices of pipe segments and at the crack vicinity [13],
respectively, and are given below:

S½ 
i¼

Si
11 Si

12 Si
13 Si

14

Si
21 Si

22 Si
23 Si

24

Si
31 Si

32 Si
33 Si

34

Si
41 Si

42 Si
43 Si

44

2
6664

3
7775; i ¼ 1; 2; ð4Þ

S½ 
3¼

1 0 0 0

0 1 1
K

0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð5Þ
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Fig. 1. (a) Schematic diagram of simply supported pipe with crack. (b) Representation by roational spring.
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where

Si
11 ¼

f2
2 coshOi þ f2

1 cosYi

l1
; Si

12 ¼
f3
2 sinhOi

j1

þ
f2
1 sinYi

j2

; Si
13 ¼

coshOi � cosYi

EIl1
;

Si
14 ¼

sinhOi

EIj1

�
sinYi

EIj2

; Si
21 ¼

f1f
2
2 sinhOi � f2

1f2 sinYi

l1
; Si

22 ¼
f2
2 coshOi þ f2

1 cosYi

l1
;

Si
23 ¼

f1 sinhOi þ f2 sinYi

EIl1
; Si

24 ¼
coshOi � cosYi

EIl1
; Si

31 ¼
EIl2ðcoshOi � cosYiÞ

l1
;

Si
32 ¼ EIl2

sinhOi

j1

�
sinYi

j2

� �
; Si

33 ¼
f2
1 coshOi þ f2

2 cosYi

l1
;

Si
34 ¼

f2
1 sinhOi

j1

þ
f2
2 sinYi

j2

; Si
41 ¼

EIl2ðf1 sinhOi þ f2 sinYiÞ
l1

;

Si
42 ¼ EIl2

f1 coshOi

j1

�
f2 cosYi

j2

� �
; Si

43 ¼
f3
1 sinhOi � f3

2 sinYi

l1
;

Si
44 ¼

f3
1 coshOi

j1

þ
f3
2 cosYi

j2

;

l1 ¼ f2
1 þ f2

2; l2 ¼ f2
1f

2
2; j1 ¼ f3

1 þ f2
2f1; f2 ¼ f3

2 þ f2
1f2;

f1;2 ¼
8Aip=EI þ Aip=EI

	 
2þ4o2ðAirf þ AprpÞ=EI
n o1=2

 �1=2

2
;

O1 ¼ f1L1 and Y1 ¼ f2L1 for i ¼ 1;

O2 ¼ f1L2 and Y2 ¼ f2L2 for i ¼ 2;

L1;L2 ¼ length of segments 1 and 2:

The following characteristic equation is obtained after inserting the boundary conditions:

det
A11 þ

B11

K
A12 þ

B12

K

A21 þ
B21

K
A22 þ

B22

K

2
64

3
75 ¼ 0: ð6Þ

Alternatively, Eq. (6) can be written in the following form and it can be used to solve the inverse
problem:

ðA12A21 � A11A22ÞK � ðA11B22 þ A22B11 � A12B21 � A21B12Þ ¼ 0; ð7Þ

where

A11 ¼ r3r1 þ s3s1 þ t3t1 þ u3u1; A12 ¼ r3r2 þ s3s2 þ t3t2 þ u3u2;

A21 ¼ r4r1 þ s4s1 þ t4t1 þ u4u1; A22 ¼ r4r2 þ s4s2 þ t4t2 þ u4u2;
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B11 ¼ s3t1; B12 ¼ s3t2; B21 ¼ s4t1; B22 ¼ s4t2;

r1 ¼ S1
12; r2 ¼ S1

14; r3 ¼ S2
22; r4 ¼ S2

31;

s1 ¼ S1
11; s2 ¼ S1

13; s3 ¼
f2
2 sinhO2

j1

�
f2
1 sinY2

j2

� �
; s4 ¼ S2

32;

t1 ¼ EIl2
sinhO1

j1

�
sinY1

j2

� �
; t2 ¼ S1

34; t3 ¼ S2
24; t4 ¼ S2

33;

u1 ¼ S1
42; u2 ¼

f3
1 cos hO1

j1

þ
f3
2 cosY1

j2

; u3 ¼
sinhO2

EIj1

�
sinY2

EIj2

; u4 ¼ S2
44:

3. Rotational spring stiffness

The change in strain energy of a pipe with and without a crack under the action of a constant
transverse load is equal to the energy released due to the crack. That is,

DU ¼
Z

Ac

K2
I

2E
dA ¼ Uc � Unc; ð8Þ

where KI is the SIF for first mode crack, Uc and Unc are strain energy of the crack and uncracked
pipe and Ac is area of crack. When the rotational spring is used to represent the crack, this energy
released gets stored in the spring. This is also given by

DU ¼
M2

empty pipe

2K
; ð9Þ

where Mempty pipe ¼ FL1L2=L þ WPLL1=2� WPL2
1=2 is bending moment at the crack section due

to loading F and self-weight WP and K is the rotational spring stiffness. The difference DU can be
calculated by applying a load F on the pipe and measuring the deflections in the two cases. That
is,

DU ¼ Uc � Unc ¼
F ðdc � dncÞ

2
; ð10Þ

when the pipe is empty and dnc and dc are the corresponding deflections along the load line.
Therefore,

K ¼
M2

empty pipe

Fðdc � dncÞ
: ð11Þ

For the case of a pipe with a fluid under pressure, considering the weight of fluid and pipe and
its contributions to deflections, it is again possible to write

DU ¼
M2

fluid filled pipe

2K
; ð12Þ
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where Mfluid filled pipe ¼ FL1L2=L þ WFPLL1=2� WFPL2
1=2� Aipdnc; WFP is the total weight of the

fluid and pipe material per unit length.

4. Experimental determination of rotational spring stiffness K

Experiments were considered to determine the rotational spring stiffness K using two
techniques, which are based on deflection and vibration. Specimens were made out of aluminium
and mild steel pipes. Tests were conducted with empty and water-filled pipes. Both pressurized
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Fig. 3. Schematic of experimental setup for frequency measurement.
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Fig. 2. Schematic of experimental setup for measurement of static deflection.
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and no pressure conditions were examined. Two water pressures (gauge) were considered: 0.4905
and 0.981MPa. All tests were carried out with simply supported end conditions. Aluminium pipe
details are: length L ¼ 0:89m, external diameter Do ¼ 0:033m and internal diameter Di ¼ 0:02m
and material density ral ¼ 2645:19 kg/m3. Similar details for mild steel pipes are: L ¼ 0:82m,
Do ¼ 0:032m, Di ¼ 0:0195m and rms ¼ 7860 kg/m3. For testing with water-filled conditions, one
end of the pipe was closed by welding a cap. The other end was closed by a threaded stainless-steel
end cap, which was connected by a pipe to a hand operated hydraulic pump. To facilitate
supporting of the specimen two end supports were specially fabricated. These were fixed on a

ARTICLE IN PRESS

Table 1

Various dimensional combinations of specimens

Parameter Case

1 2 3 4 5 6 7 8 9 10 11 12

Aluminium: L ¼ 0:7m, Do ¼ 0:033m, Di ¼ 0:02m, F ¼ 147:15N
a=t 0.19043 0.19043 0.19043 0.25385 0.25385 0.25385 0.38077 0.38077 0.38077 0.6346 0.6346 0.6346

b 0.50000 0.47290 0.44290 0.50000 0.47290 0.44290 0.50000 0.47290 0.44290 0.5000 0.4729 0.4429

Mild steel: L ¼ 0:74m, Do ¼ 0:032m, Di ¼ 0:0195m, F ¼ 147:15N
a=t 0.2032 0.2032 0.3040 0.3040 0.4064 0.4064 0.5080 0.5080

b 0.2162 0.1892 0.2162 0.1892 0.3514 0.3243 0.3514 0.3243

FFT Analyzer Accelerometer Amplifier Specimen 

Hydraulic  

hand pump 

Fig. 4. Photograph of experimental setup for frequency measurement.
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Table 2

Measured rotational spring stiffness for aluminum pipes through deflection measurement

Case Empty pipe Water-filled pipe Water-filled pipe Water-filled pipe

Gauge pressure p ¼ 0 Gauge pressure p ¼ 0:4905MPa Gauge pressure p ¼ 0:981MPa

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

1 312.75 313.04 16.5950 315.651 315.94 16.8312 315.60 315.88 17.3691 315.48 315.75 17.9470

2 311.25 311.55 15.9470 16.0558 313.75 314.04 16.7320 16.3000 313.75 314.06 15.5960 16.2521 313.80 314.10 16.0575 16.2520

3 305.75 306.05 15.6254 307.20 307.51 15.3370 307.25 307.55 15.7912 307.10 307.42 14.7513

4 312.75 313.22 10.2394 315.65 316.12 10.3852 315.60 316.06 10.5725 315.48 315.95 10.3100

5 311.25 311.74 9.7637 9.3161 313.75 314.24 9.9027 9.4950 313.75 314.24 9.8669 9.4450 313.80 314.30 9.6345 9.3151

6 305.75 306.34 7.9451 307.20 307.78 8.1972 307.25 307.85 7.8956 307.10 307.69 8.0007

7 312.75 313.98 3.9126 315.65 316.94 3.7837 315.60 316.83 3.9539 315.48 316.77 3.7564

8 311.25 312.55 3.6802 3.7057 313.75 315.05 3.7326 3.6970 313.75 315.08 3.6352 3.6823 313.80 315.11 3.6773 3.6020

9 305.75 307.08 3.5245 307.20 308.53 3.5747 307.25 308.62 3.4579 307.10 308.50 3.3717

10 312.75 317.30 1.0577 315.65 320.20 1.0728 315.60 320.15 1.0689 315.48 320.00 1.0721

11 311.25 315.80 1.0515 1.0435 313.75 318.35 1.0549 1.0538 313.75 318.36 1.0488 1.0383 313.80 318.39 1.0495 1.0493

12 305.75 310.34 1.0213 307.20 311.80 1.0336 307.25 312.00 0.9973 307.10 311.70 1.0262
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Table 3

Measured rotational spring stiffness for mild steel pipes through deflection measurement

Case Empty pipe Water-filled pipe Water-filled pipe Water-filled pipe

Gauge pressure p ¼ 0 Gauge pressure p ¼ 0:4905MPa Gauge pressure p ¼ 0:981MPa

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

dnc � 10�6

(m)

dc � 10–6

(m)

K

(MN/m)

Kaverage

(MN/m)

1 75.30 75.42 23.2510 22.0165 76.25 76.37 23.5638 22.3128 76.00 76.13 21.7274 23.7220 76.35 76.47 23.5121 24.5120

2 62.20 62.31 20.782 63.37 63.48 21.0618 63.40 63.49 25.7163 63.25 63.34 25.6911

3 75.30 75.52 12.6822 12.3570 76.25 76.47 12.853 12.8621 76.00 76.21 13.4503 13.1693 76.35 76.56 3.4355 13.5183

4 62.20 62.39 12.0317 63.37 63.55 12.8711 63.40 63.58 12.8582 63.25 63.42 13.6010

5 130.85 131.45 8.4101 8.2975 132.25 132.83 8.8172 8.5561 132.00 132.58 8.8048 8.6183 132.40 132.95 9.2719 8.9227

6 121.80 122.37 8.1848 122.75 123.32 8.2950 122.00 122.56 8.4317 121.80 122.35 8.5734

7 130.85 131.88 4.8991 4.8794 132.25 133.27 5.0137 4.9441 132.00 132.04 4.9104 4.8643 132.40 133.37 5.2572 5.0344

8 121.80 122.76 4.8597 122.75 123.72 4.8744 122.00 22.98 4.8181 121.80 122.78 4.8116
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vibration table at a required spacing by T-bolts. The setup is shown in Figs. 2–4. Pressure of fluid
is directly noted from the pressure gauge of the hand pump. A total of 17 specimens (including
two virgin specimens, one each for the two materials) were considered for the vibration test. Span
length L ¼ 0:87m for aluminium and L ¼ 0:8m for mild steel pipes. The same specimens were
used for static deflection measurement test with span length 0.7 and 0.74m for aluminium and
steel, respectively. Various dimensional combinations considered are shown in Table 1. The effect
of overhang was neglected. Crack sizes in the ranges a=t ¼ 0:1920:64; where a is the edge crack
size and t is the pipe wall thickness, were examined. The cracks were generated through wire-cut
machining. The wire diameter was 0.15mm.
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Table 4

Predicted stiffness and crack location for aluminum pipes through frequency measurement (L ¼ 0:87m, Do ¼ 0:033m,

Di ¼ 0:02m, Eempty pipe=60.3478GPa, Ewater-filled pipe=61.6181GPa)

Actual data Natural frequencies (Hz) Predicted data

b a=t o2 o3 o4 K (MN/m) b % error in b

Empty pipe

No crack 382.50 835.0 1390.00

382.50a 860.63a 1530.00a

0.207 0.19043 382.42 834.85 1389.90 16.387 0.205 �0.20

0.25385 382.37 834.75 1389.85 9.900 0.202 �0.50

0.38077 382.20 834.20 1389.45 3.613 0.189 �1.80

0.63460 381.30 832.70 1389.10 1.050 0.225 �1.80

0.284 0.19043 382.42 834.95 1389.95 15.467 0.280 �0.40

0.25385 382.38 834.92 1389.90 9.532 0.281 �0.30

0.38077 382.20 834.85 1389.70 3.875 0.291 �0.70

0.63460 381.40 834.40 1389.30 1.120 0.278 �0.60

0.397 0.25385 382.42 834.92 1389.50 8.833 0.375 �2.20

0.38077 382.38 834.75 1388.65 3.350 0.405 �0.80

0.63460 381.95 834.00 1385.70 0.960 0.395 �0.20

Water-filled pipe

Gauge pressure p ¼ 0

No crack 350.00 775.00 1317.50

350.00a 787.50a 1400.00a

0.207 0.19043 349.93 774.85 1317.45 16.000 0.215 0.80

0.25385 349.88 774.77 1317.40 9.820 0.212 0.50

0.38077 349.72 774.20 1317.00 3.493 0.188 �1.90

0.63460 348.85 772.75 1316.65 1.002 0.215 0.80

0.284 0.19043 349.93 774.95 1317.45 15.767 0.277 �0.70

0.25385 349.88 774.90 1317.40 8.867 0.276 �0.80

0.38077 349.70 774.85 1317.20 3.702 0.287 0.30

0.63460 348.85 774.50 1316.85 1.075 0.286 0.20

0.397 0.25385 349.95 774.90 1317.00 8.750 0.400 0.30

0.38077 349.85 774.75 1316.20 3.350 0.391 �0.60

0.63460 349.50 774.00 1313.20 0.965 0.393 �0.40

aNatural frequency of uncracked pipe calculated analytically.
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4.1. Deflection method

To facilitate determination of K through deflection measurements, a load was applied to the
virgin specimen and the deflection was measured. Similar deflections were obtained by varying the
load. A linear behavior was observed. A cracked specimen of the same geometry was then loaded
at the same location and the load point deflection was measured. In this case too a linear behavior
was observed. This procedure was repeated for all specimens for the two materials. The deflections
were measured using a dial gauge with a least count of 0.001mm. For each material four crack
sizes were examined. In the case of aluminium, for each crack size, three positions were
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Table 5

Predicted stiffness and crack location for aluminum pipes through frequency measurement (L ¼ 0:87m, Do ¼ 0:033m,

Di ¼ 0:02m, Ep¼0:4905 MPa=62.4428GPa, Ep¼0:981 MPa=62.828GPa)

Actual data Natural frequencies (Hz) Predicted data

b a=t o2 o3 o4 K (MN/m) b % error in b

Water-filled pipe

Gauge pressure p ¼ 0:4905MPa

No crack 352.500 777.50 1319.50

352.50a 792.92a 1409.50a

0.207 0.19043 352.44 777.34 1319.44 17.083 0.202 �0.50

0.25385 352.38 777.26 1319.41 9.875 0.201 �0.60

0.38077 352.22 776.70 1319.00 3.547 0.188 �1.90

0.63460 351.34 775.24 1318.68 1.040 0.214 0.70

0.284 0.19043 352.43 777.46 1319.42 15.683 0.288 0.40

0.25385 352.40 777.41 1319.38 10.200 0.278 �0.60

0.38077 352.22 777.37 1319.15 3.930 0.290 �0.60

0.63460 351.37 777.00 1318.88 1.100 0.281 �0.30

0.397 0.25385 352.46 777.42 1319.00 8.567 0.410 1.30

0.38077 352.36 777.26 1318.22 3.450 0.394 �0.30

0.63460 352.10 776.55 1315.20 0.977 0.408 1.10

Water-filled pipe

Gauge pressure p ¼ 0:981MPa

No crack 353.75 779.25 1321.00

353.75a 795.53a 1414.01a

0.207 0.19043 353.68 779.12 1320.95 17.625 0.217 1.00

0.25385 353.62 779.05 1320.92 10.977 0.220 1.30

0.38077 353.48 778.43 1320.50 3.568 0.188 �1.90

0.63460 352.65 777.10 1320.15 1.092 0.214 0.70

0.284 0.19043 353.68 779.22 1320.93 17.020 0.290 0.60

0.25385 353.65 779.18 1320.90 11.120 0.280 �0.40

0.38077 353.45 779.10 1320.75 3.938 0.281 �0.30

0.63460 352.65 778.80 1320.40 1.177 0.282 �0.20

0.397 0.25385 353.68 779.18 1320.50 9.013 0.382 �1.50

0.38077 353.65 779.00 1319.75 3.267 0.415 1.80

0.63460 353.30 778.30 1316.75 1.013 0.395 �0.20

aNatural frequency of uncracked pipe calculated analytically.
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Table 6

Predicted stiffness and crack location for mild steel pipes through frequency measurement (L ¼ 0:8m, Do ¼ 0:032m,

Di ¼ 0:0195m, Eempty pipe ¼ 173:808GPa, Ewater-filled pipe ¼ 178:328GPa)

Actual data Natural frequencies (Hz) Predicted data

b a=t o2 o3 o4 K(MN/m) b % error in b

Empty pipe

No crack 432.50 925.15 1602.50

432.50a 973.12a 1730.00a

0.199 0.2032 432.33 924.80 1602.40 21.47 0.210 1.10

0.3040 432.20 924.50 1602.00 12.51 0.205 0.60

0.403 0.4064 432.25 924.85 1600.80 8.21 0.384 �1.90

0.5080 432.20 924.65 1599.50 4.79 0.390 �1.30

Water-filled pipe

Gauge pressure p ¼ 0

No crack 422.50 905.00 1587.50

422.5 950.62a 1690.00a

0.199 0.2032 422.30 904.65 1587.40 20.13 0.220 2.10

0.3040 422.20 904.30 1587.00 12.21 0.196 �0.30

0.403 0.4064 422.25 904.70 1585.70 8.02 0.390 �1.30

0.5080 422.15 904.50 1584.50 4.94 0.395 �0.80

aNatural frequency of uncracked pipe calculated analytically.

Table 7

Predicted stiffness and crack location for mild steel pipes through frequency measurement (L ¼ 0:8m, Do ¼ 0:032m,

Di ¼ 0:0195m, Ep¼0:4905 MPa=179.5433GPa, Ep¼0:981 MPa=180.5503GPa)

Actual data Natural frequencies (Hz) Predicted data

b a=t o2 o3 o4 K (MN/m) b % error in b

Water-filled pipe

Gauge pressure p ¼ 0:4905MPa

No crack 424.00 907.50 1590.00

424.00a 953.92a 1695.81a

0.199 0.2032 423.78 906.18 1590.35 20.28 0.220 2.10

0.3040 423.72 905.85 1590.10 13.00 0.196 �0.30

0.403 0.4064 423.78 906.20 1588.75 8.42 0.388 �1.50

0.5080 423.70 905.90 1587.55 4.99 0.398 �0.50

Water-filled pipe

Gauge pressure p ¼ 0:981MPa

No crack 425.25 908.00 1593.00

425.25a 956.66a 1700.62a

0.199 0.2032 425.06 907.68 1592.94 21.02 0.225 2.60

0.3040 424.98 907.35 1592.55 13.22 0.192 �0.70

0.403 0.4064 425.10 907.75 1591.25 8.54 0.410 0.70

0.5080 424.95 907.60 1590.20 5.50 0.392 �1.10

aNatural frequency of uncracked pipe calculated analytically.
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considered. In each case a load 147.15N was applied in the transverse direction, i.e., along the
crack line. In the case of steel, a similar combination was considered except that only two crack
positions were taken instead of three. Experimental data for various dimensional combinations
(Table 1) are shown in Tables 2 and 3.

4.2. Vibration method

To measure the natural frequencies an accelerometer (Type 4374, Bruel & Kjaer, Denmark)
with a mass of 0.65 g was fixed on the top of the specimens using wax at a distance of 0.2m from
one of the ends. The output of the accelerometer was amplified by a charge amplifier (Type 5974,
Bruel & Kjaer, Denmark) and was finally analyzed using a FFT analyzer (Type R9211A,
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Fig. 5. Plots of stiffness K vs. crack location b for water-filled pipe: (a) no pressure, (b) gauge pressure=0.981MPa.
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Advantest, Japan). The frequencies corresponding to the first few peaks are the natural
frequencies of the pipe.
During testing a pipe was lightly tapped by a hammer in the transverse direction and the first

few natural frequencies, first to fourth, were measured from the frequency responses. Frequencies
for both cracked and the corresponding uncracked pipes were obtained. The experimental data
for the second, third and fourth frequencies are shown in Tables 4–7. The first showed minimal
difference between the uncracked and cracked pipes and it has not been included. The first two
tables present results for aluminium; the last two show the same for mild steel. The experimental
and analytical uncracked pipe frequencies are required for zero setting, while solving an inverse
problem [8]. The uncracked pipe frequencies obtained analytically are also shown in these tables.
To use appropriate data, Young’s modulus of elasticity E was calculated through the measured
second natural frequency of the uncracked empty pipe. The values obtained are 60.3478 and
173.808GPa for aluminium and steel, respectively. These show a difference with the standard
values by about 14%. The data for the water-filled pipes were also obtained in a similar manner.
These are shown in Tables 4–7. As the water pressure increased, the modulus of elasticity showed
a marginal increase.
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Fig. 6. Comparison of variation of stiffness K with crack size a=t for (a) aluminum and (b) mild steel pipes obtained by

two methods for different internal conditions.
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5. Results on stiffness and crack prediction

The rotational spring stiffnesses calculated using Eqs. (11) and (12) for empty and water-filled
conditions, respectively, are also shown in the tables. In the case of aluminium, for each crack size
three crack positions are considered, and hence three stiffnesses are obtained. Since the rotational
spring stiffness does not depend on crack positions the average of these three values is taken as the
rotational spring stiffness. These are shown in Table 2. The similar results, but an average of two
stiffnesses for mild steel, are shown in Table 3. Based on these observations it is found that the
stiffness of pipe filled with water at no pressure differ from that of the empty pipe at the most by
1.92% and 10.065% for aluminium and mild steel, respectively. For the two cases of water under
pressure (0.4905 and 0.981MPa), the stiffnesses differ from that of the water-filled pipe at no
pressure by at the most 1.471% and 2.57%, respectively, for aluminium, 6.316% and 10.26%,
respectively, for mild steel.
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Fig. 7. Comparison of variation of stiffness K with crack size a=t for (a) aluminum and (b) mild steel for different fluid

pressure obtained by frequency-based method.
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To get the stiffness through the inverse analysis, for a particular crack size, variation of
rotational spring stiffness with crack position along the beam length is obtained using Eq. (7)
corresponding to each of the three frequencies. These three variations, K vs. crack location, are
plotted. Typical plots are shown in Fig. 5. The intersection of the three curves gives the rotational
spring stiffness. In case the curves do not intersect exactly at a point, the center of gravity of the
three intersections is taken to obtain the stiffness [17]. The results are shown in Tables 4 and 5 for
aluminium and Tables 6 and 7 for mild steel pipes. The stiffness in the case of pipe filled with
water at no pressure differ with that of the empty pipe at the most by 4.571% and 6.241% for
aluminium and mild steel, respectively. The similar difference in the case of water under pressure
0.4905 and 0.981MPa is 6.77% and 11.78%, respectively, for aluminium and 6.47% and 10.88%,
respectively, for steel. The stiffness obtained by the frequency method differs from that obtained
through deflection techniques by 6.268% and 5.518% for empty and water-filled pipes of
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pressure obtained by deflection-based method.
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aluminium, respectively. The similar differences for the mild steel pipes are 2.482% and 9.783%,
respectively. The results by the two methods are therefore very close. The variations of rotational
spring stiffness with crack size are shown in Figs. 6–8. These results are combined to show the
band in variation in Fig. 9. Since a closed form relation between the rotational spring stiffness and
crack size is not available, these plots can be very helpful in crack detection; crack size can be
obtained given a spring stiffness.
Plots of variations of rotational spring stiffness K with crack location b (Fig. 5) helps to predict

the crack location as well. The results so obtained are presented in Tables 4–7. The maximum
errors in the prediction are less than 2.2% and 2.6% for aluminium and mild steel pipes,
respectively. The vibration method can therefore be employed for prediction of crack location.
The crack size has been predicted using Fig. 9. These are shown in Table 8 for one crack

position only (b ¼ 0:284 for aluminium and b ¼ 0:199 for mild steel). The error in size lies in the
range �16.44% to 10.30% for aluminium and �5.83% to 12.04% for mild steel.
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Fig. 9. Band of variation of stiffness K with crack size a=t for (a) aluminum and (b) mild steel.
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Table 8

Accuracy of prediction of crack size

Actual a=t Predicted crack data

K(MN/m) a=t % error in a=t

Min Max. Min. Max.

Aluminium empty pipe

0.19043 15.467 0.191 0.207 0.30 8.00

0.25385 9.532 0.240 0.271 �5.77 6.33

0.38077 3.875 0.357 0.375 �6.66 �1.54

0.63460 1.120 0.563 0.624 �12.72 �1.70

Aluminium pipe with water at p ¼ 0

0.19043 15.767 0.186 0.204 �2.38 6.65

0.25385 8.867 0.252 0.283 �0.73 10.30

0.38077 3.702 0.364 0.382 �4.61 0.32

0.63460 1.075 0.568 0.615 �11.73 �3.20

Aluminium pipe with water at p ¼ 0:4905MPa

0.19043 15.683 0.188 0.205 �1.29 7.11

0.25385 10.200 0.233 0.264 �8.95 3.85

0.38077 3.930 0.358 0.374 �6.36 �1.81

0.63460 1.100 0.560 0.610 �13.32 �4.03

Aluminium pipe with water at p ¼ 0:981MPa

0.19043 17.020 0.181 0.195 �5.21 2.34

0.25385 11.120 0.223 0.253 �13.83 �0.34

0.38077 3.938 0.357 0.373 �6.66 �2.08

0.63460 1.177 0.545 0.581 �16.44 �9.23

Mild steel empty pipe

0.2032 21.47 0.192 0.225 �5.83 9.69

0.3040 12.51 0.299 0.322 �1.67 5.59

Mild steel pipe with water at p ¼ 0

0.2032 20.13 0.203 0.231 �0.10 12.03

0.3040 12.21 0.302 0.328 �0.66 7.32

Mild steel pipe with water at p ¼ 0:4905MPa

0.2032 20.28 0.200 0.231 �1.60 12.04

0.3040 13.00 0.290 0.313 �4.83 2.88

Mild steel pipe with water at p ¼ 0:981MPa

0.2032 21.02 0.195 0.225 �4.21 9.69

0.3040 13.22 0.288 0.310 �5.56 1.94
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6. Conclusions

The utility of representing a crack by a rotational spring in a straight component like an empty
pipe for modelling its transverse free vibration for solving both the forward and inverse problems
has been extended to include pipes filled with a fluid like water at varying (gauge) pressures. The
rotational spring stiffness for pipes of two different materials and dimensions have been measured
through the displacement- and vibration-based methods. There is a good agreement between the
results obtained by the two methods. The relationships between the stiffness and crack size have
been obtained. These will be useful for predicting crack sizes. The present effort to predict crack
locations in the pipes show encouraging trend; the error is less than 2.6%. The error in crack size
prediction lies in the range �16.44% to 12.04%.

References

[1] W.M. Ostachowicz, M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beam,

Journal of Sound and Vibration 150 (1991) 191–201.

[2] A.K. Pandey, M. Biswas, M.M. Samman, Damage detection from changes in curvature mode shapes, Journal of

Sound and Vibration 145 (1991) 321–332.

[3] T.G. Chondros, A.D. Dimarogonas, Vibration of a cracked cantilever beam, Transactions of the American Society

of Mechanical Engineers, Journal of Vibration and Acoustics 120 (1998) 742–746.

[4] A.D. Dimarogonas, Vibration of cracked structures: a state of the art review, Engineering Fracture Mechanics 55

(1996) 831–857.

[5] M.N. Cerri, F. Vestoroni, Detection of damage in beams subjected to diffused cracking, Journal of Sound and

Vibration 234 (2000) 259–276.

[6] R.Y. Liang, F.K. Choy, J. Hu, Detection of cracks in beam structures using measurements of natural frequencies,

Journal of the Franklin Institute 328 (1991) 505–518.

[7] X.F. Yang, A.S.J. Swamidas, R. Seshadri, Crack identification in vibrating beams using the energy method,

Journal of Sound and Vibration 244 (2000) 339–357.

[8] B.P. Nandwana, S.K. Maiti, Detection of the location and size of a crack in stepped cantilever beams based on

measurement of natural frequencies, Journal of Sound and Vibration 203 (1997) 435–446.

[9] B.P. Nandwana, S.K. Maiti, Modelling of vibration of beam in presence of inclined edge and internal crack for its

possible detection based on frequency measurements, Engineering Fracture Mechanics 58 (1997) 93–205.

[10] T.D. Chaudhari, S.K. Maiti, Modelling of transverse vibration of beam of linearly variable depth with edge crack,

Engineering Fracture Mechanics 63 (1999) 425–445.

[11] T.D. Chaudhari, S.K. Maiti, Experimental verification of a method of detection of crack in taper and segmented

beams based on modeling of transverse vibration, International Journal of Fracture 102 (2000) 33–38.

[12] T.D. Chaudhari, S.K. Maiti, A study of vibration of geometrically segmented beams with and without crack,

International Journal of Solids and Structures 37 (2000) 761–779.

[13] D.P. Patil, S.K. Maiti, Modelling of geometrically segmented beams to facilitate crack detection using frequency

measurements, Proceedings of the 18th Canadian Congress of Applied Mechanics, Newfoundland, Canada, 2001,

pp. 75–76.

[14] Y. Narkis, Identification of crack location in vibrating simply supported beam, Journal of Sound and Vibration

172 (1994) 549–558.

[15] A.P. Bovsunovsky, V.V. Matveev, Analytical approach to the determination of dynamic characteristics of a beam

with a closing crack, Journal of Sound and Vibration 235 (2000) 415–435.

[16] T.D. Chaudhari, S.K. Maiti, Modelling of transverse vibration of circular and I-section beams with open edge

crack to facilitate solving forward and inverse problems, Proceedings of the 18th Canadian Congress of Applied

Mechanics, Newfoundland, Canada, 2001, pp. 77–78.

ARTICLE IN PRESS

S.M. Murigendrappa et al. / Journal of Sound and Vibration 270 (2004) 1013–1032 1031



[17] B.P. Nandwana, On foundation for detection of crack based on measurement of natural frequencies, Ph.D. Thesis,

Department of Mechanical Engineering, Indian Institute of Technology Bombay, 1997.

[18] S. Chinchalkar, Determination of crack location in beams using natural frequencies, Journal of Sound and

Vibration 247 (2001) 417–429.

[19] A. Morassi, Identification of a crack in a rod based on changes in a pair of natural frequencies, Journal of Sound

and Vibration 242 (2001) 577–596.

[20] M. Boltezar, B. Strancar, A. Kuhelj, Identification of transverse crack location in flexural vibrations of free–free

beams, Journal of Sound and Vibration 211 (1998) 729–734.

[21] M.F. Yuen, A numerical study of the eigenparameters of a damaged cantilever, Journal of Sound and Vibration

103 (1985) 301–310.

[22] H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, 3rd Edition, ASME Press, New York,

2000.

[23] M.P. Paidousssis, G.X. Li, Pipes conveying fluid: a model dynamical problem, Journal of Fluids and Structures 7

(1993) 137–204.

ARTICLE IN PRESS

S.M. Murigendrappa et al. / Journal of Sound and Vibration 270 (2004) 1013–10321032


	Experimental and theoretical study on crack detection in pipes filled with fluid
	Introduction
	Formulation for free vibration of pressurized pipe with crack
	Rotational spring stiffness
	Experimental determination of rotational spring stiffness K
	Deflection method
	Vibration method

	Results on stiffness and crack prediction
	Conclusions
	References


